Entwässerungsplanung Regenwasser

Antragsteller:

Wunderpark GmbH & Co. KG Im Erlengrund 2 49688 Lastrup

Projekt:

Bebauungsplan Nr. 196 "Wohnprojekt Am Schützenplatz"

Neubau von Mehrfamilienhäusern mit Tiefgarage und Nebengebäuden

Am Schützenplatz / Lohner Straße, 49377 Vechta

Ausfertigung

Bearbeitet durch:

Antonius Timme

Dipl.-Ing. (FH)
Tiefbau | Wasserwirtschaft | SiGeKo
Zertifizierter Fachberater Kanalsanierung

Karl-Bunje-Straße 23 | 49688 Lastrup

Telefon: 0 44 72 / 9 40 70 60 Fax: 0 44 72 / 9 40 70 61 info@antonius-timme.de www.antonius-timme.de

INHALTSVERZEICHNIS

1	Vorwort		2
1.1	Allgemeines		2
1.2	Planungsgrundlagen		2
1.2.1	Literaturverzeichnis		2
1.2.2	Regenhäufigkeit / Regendauer		2
1.2.3	Regenspende		3
1.2.4	Bewachsene Flächen		3
1.2.5	Spitzenabflussbeiwerte		3
1.2.6	Berechnungsverfahren		3
1.2.7	k _f -Wert Bestimmung		4
1.2.8	Bemessungsgrundwasserstand		4
2	Beschreibung der Einzugsflächen und Oberflächenabflüsse		5
2.1	Aufstellung der vorhandenen Einzugsflächen		5
2.2	Aufstellung der geplanten Einzugsflächen		5
2.2.1	Kanalisierte Einzugsflächen		5
2.2.2	Einzugsflächen über Dränageableitung		6
2.3	Berechnung der resultierenden Einzugsfläche		6
3	Berechnung der geplanten Entwässerungseinrichtungen		7
3.1	Berechnung des Drosselabflusses		7
3.2	Berechnung des Rückhaltevolumens		7
3.2.1	Nachweis des erforderlichen Stauvolumens		8
3.2.2	Hydraulische Berechnung der Drosselung		8
3.3	Hydraulische Berechnung der Regenwasserkanalisation		9
3.4	Überflutungsnachweis		10
4	Zusammenfassung		11
	Anlage 1Übersichtskarte – Blatt Nr. 1	М	1:5.000
	Anlage 1Lageplan Flächeneinzug – Blatt Nr. 2 Anlage 1Lageplan Regenwasser – Blatt Nr. 3	M M	1:250 1:250
	Alliaut ILautbiaii neutiwassei – Diall IVI. 3	IVI	1.430

1 Vorwort

1.1 Allgemeines

Die Wunderpark GmbH & Co. KG, Im Erlengrund 2, in 49688 Lastrup, plant den Neubau von Mehrfamilienhäusern, mit einer Tiefgarage und Nebengebäuden auf dem Grundstück Am Schützenplatz 17 / Lohner Straße, in Vechta. Der an diesem Standort befindliche Gebäudetrakt sowie die zugehörigen befestigten Flächen werden für die Neuplanungen vollständig zurückgebaut. Die Betriebsflächen werden neu strukturiert, sodass die vorhandenen versiegelten Flächen ganzheitlich umgestaltet werden. Aus diesem Grund wird ein Antrag auf Erteilung einer wasserrechtlichen Erlaubnis zur Ableitung von Niederschlagswasser gestellt.

Zur Ableitung des Oberflächenwassers ist von den erweiterten Flächen eine Abflussdrosselspende von $q_{dr,u} = 1,5 \text{ l/(sxha)}$ zu berücksichtigen. Der Anteil der bereits bestehenden Flächenversiegelung (Altbebauung) wird zurückgebaut und ist hiervon auszuschließen.

Das zurückzubauende Gebäude ist in der Anlage 1, Blatt 3 gelb dargestellt. Die geplanten Neubauten sind rot dargestellt. Die Ergebnisse dieser Berechnungen sind in den nachfolgenden Erläuterungen und Aufstellungen enthalten. Es werden ausschließlich nicht verunreinigte Wässer aus den Dachentwässerungen und der Oberfläche abgeleitet. Das anfallende Schmutzwasser wird in einem Freigefällekanal dem Schmutzwasserkanal in der Straße Am Schützenplatz zugeführt.

In diesem Antrag ist der gesamte Standort der geplanten Wohnhäuser, mit allen neu herzustellenden Bauwerken und neu zu befestigten Flächen, enthalten.

1.2 Planungsgrundlagen

Für die Planung werden folgende Unterlagen zugrunde gelegt:

- 1. Lageplan zur Verfügung gestellt durch das Vermessungsbüro Frank Markus aus Lohne
- 2. Objektplanung des Planungsbüros Ortmann und Möller aus Lastrup
- 3. Ortsbegehung im September 2022
- 4. Kanalauszug der Stadt Vechta, Stand September 2022

1.2.1 Literaturverzeichnis

Arbeitsblatt DWA-A 117 "Bemessung von Regenrückhalteräumen", Ausgabe 2013

Arbeitsblatt DWA-A 118 "Hydraulische Bemessung und Nachweis von Entwässerungssystemen", Ausgabe 2006

Arbeitsblatt DWA-A 138 "Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser", Ausgabe 2005

Merkblatt DWA-M 153 "Handlungsempfehlungen zum Umgang mit Regenwasser", Ausgabe 2007

DIN EN 752 "Entwässerungssysteme außerhalb von Gebäuden", Ausgabe 2017

DIN 1986 "Entwässerungsanlagen für Gebäude und Grundstücke", Ausgabe 2008

Taschenbuch der Stadtentwässerung, 32. Auflage, Ausgabe 2018

1.2.2 Regenhäufigkeit / Regendauer

Regenhäufigkeit:

Die Regenhäufigkeit wird mit dem 5-jährlichen Regen angesetzt (T=5).

Regendauer:

Die anzusetzende Regendauer wird gemäß dem DWA-A 118 und der DIN 1986-100 angesetzt.

Für eine Geländeneigung > 1% bis 4% Befestigung ≥ 50%

D = 5 min

1.2.3 Regenspende

Die Regenspende wurde dem KOSTRA-Atlas 2010R, Version 3.2, des Deutschen Wetterdienstes (DWD) für die Ortschaft Vechta entnommen.

Zeitspanne: Januar – Dezember Rasterfeld: Spalte 21, Zeile 32

Rasterfeld		Spalte	: 21, Ze	ile: 32															
D [min]	D [h]	1		2		3		5		10		20		30		50		100	
		hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN
5		4,9	163,3	6,8	226,7	7,9	263,3	9,3	310,0	11,2	373,3	13,1	436,7	14,2	473,3	15,6	520	17,5	583,3
10		7,8	130,0	10,4	173,3	11,9	198,3	13,8	230,0	16,3	271,7	18,9	315,0	20,4	340,0	22,2	370,0	24,8	413,3
15		9,8	108,9	12,8	142,2	14,6	162,2	16,8	186,7	19,9	221,1	22,9	254,4	24,7	274,4	27,0	300,0	30,0	333,3
20		11,1	92,5	14,6	121,7	16,6	138,3	19,1	159,2	22,6	188,3	26,1	217,5	28,1	234,2	30,6	255,0	34,1	284,2
30		13,0	72,2	17,1	95,0	19,5	108,3	22,5	125,0	26,6	147,8	30,8	171,1	33,2	184,4	36,2	201,1	40,3	223,9
45		14,5	53,7	19,5	72,2	22,3	82,6	26,0	96,3	30,9	114,4	35,8	132,6	38,7	143,3	42,3	156,7	47,2	174,8
60	1	15,5	43,1	21,1	58,6	24,3	67,5	28,4	78,9	34,0	94,4	39,6	110,0	42,8	118,9	46,9	130,3	52,5	145,8
90	1,5	17,1	31,7	22,9	42,4	26,3	48,7	30,6	56,7	36,4	67,4	42,2	78,1	45,6	84,4	49,9	92,4	55,7	103,1
120	2	18,4	25,6	24,4	33,9	27,9	38,8	32,3	44,9	38,2	53,1	44,2	61,4	47,7	66,3	52,1	72,4	58,1	80,7
180	3	20,3	18,8	26,6	24,6	30,2	28,0	34,8	32,2	41,0	38,0	47,2	43,7	50,9	47,1	55,5	51,4	61,7	57,1
240	4	21,8	15,1	28,2	19,6	32,0	22,2	36,7	25,5	43,1	29,9	49,5	34,4	53,3	37,0	58,0	40,3	64,4	44,7
360	6	24,1	11,2	30,8	14,3	34,7	16,1	39,6	18,3	46,3	21,4	53,0	24,5	56,9	26,3	61,8	28,6	68,5	31,7
540	9	26,7	8,2	33,6	10,4	37,7	11,6	42,8	13,2	49,8	15,4	56,7	17,5	60,8	18,8	65,9	20,3	72,9	22,5
720	12	28,6	6,6	35,8	8,3	40,0	9,3	45,3	10,5	52,4	12,1	59,6	13,8	63,8	14,8	69,0	16,0	76,2	17,6
1.080	18	31,7	4,9	39,1	6,0	43,5	6,7	49,0	7,6	56,4	8,7	63,9	9,9	68,3	10,5	73,7	11,4	81,2	12,5
1.440	24	34,0	3,9	41,7	4,8	46,2	5,3	51,8	6,0	59,5	6,9	67,2	7,8	71,7	8,3	77,3	8,9	85,0	9,8
2.880	48	39,1	2,3	47,0	2,7	51,5	3,0	57,3	3,3	65,1	3,8	72,9	4,2	77,5	4,5	83,3	4,8	91,1	5,3
4.320	72	42,5	1,6	50,4	1,9	55,0	2,1	60,8	2,3	68,8	2,7	76,7	3,0	81,3	3,1	87,1	3,4	95,0	3,7

Regenspenden - ausgewertet

 $r_{5(5)}$ = 310,0 l/(sxha), Bemessung $r_{5(30)}$ = 473,3 l/(sxha), Bemessung

1.2.4 Bewachsene Flächen

Grünflächen, die nicht an die Entwässerungssysteme angeschlossen sind, werden nicht in die Ermittlung der Einzugsflächen einbezogen.

1.2.5 Spitzenabflussbeiwerte

Es werden folgende Abflussbeiwerte gewählt:

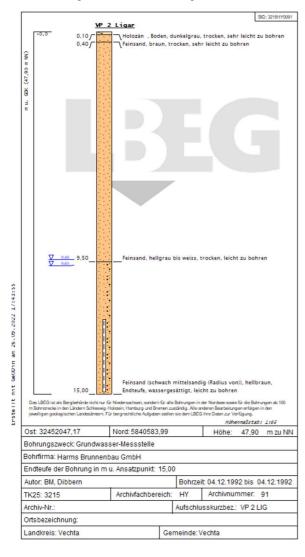
 $\begin{array}{ll} \text{D\"{a}cher} & \psi_{\text{S}} = 1{,}00 \\ \text{Pflasterfl\"{a}chen} & \psi_{\text{S}} = 0{,}75 \\ \text{\"{U}ber Dr\"{a}nage} & \psi_{\text{S}} = 0{,}30 \\ \end{array}$

1.2.6 Berechnungsverfahren

Rohrleitungen

Die Dimensionierung der Rohrleitungen wird nach der Formel von PRANDTL-COLEBROOK mit einer Betriebsrauhigkeit $k_b = 1,5$ mm, im Zeitbeiwertverfahren, durchgeführt.

<u>Versickerungen</u>


Sickermulden oder Sickerflächen werden als eingestaute Flächen, nach dem Arbeitsblatt DWA-A 138 bemessen.

Regenrückhaltung

Das Regenrückhaltebecken wird als Erdbecken mit einem Dauerstau, nach dem Arbeitsblatt DWA-A 117 bemessen. Das Risikomaß wird mit 1,20 [-] zugrunde gelegt. Die Drosselabflussspende wird mit $q_{dr} = 1,50 \text{ l/(sxha)}$ angenommen.

1.2.7 k_f-Wert Bestimmung

Auf der Liegenschaft wird ein Teil des Niederschlagswassers zur Versickerung gebracht. Für den rechnerischen Nachweis der Versickerung ist die Bestimmung des kr-Wertes notwendig. Die Versickerungen finden überwiegend auf oberflächennahen vegetativen Flächen statt. Die geologischen Verhältnisse wurden dem Datensatz des NIBIS LBEG entnommen. Hierzu wurde ein angrenzendes Bohrprofil zugrunde gelegt. Das Bohrprofil VP2 Ligar, welches im Abstand von ca. 215 m östlich des Planungsgebietes abgeteuft wurde, zeigt in den oberen Schichten eine ca. 40 cm starke Feinsandschichtung, die leicht zu bohren sind an. Darunter steht eine homogene Feinsandschicht an. Dies zeigt sich in einer hellen Farbgebung und ist ebenfalls leicht zu bohren. Diese Bodenschichtungen gelten als gut bis sehr gut sickerfähig. Die geplanten Versickerungen sollen nur von den angrenzenden Wege-und Nebenflächen erfolgen. Die Ableitung ist daher über einen vegetative Oberbodenschicht geplant. Für die nachfolgenden Berechnungen wird daher ein kr-Wert von 5 x 10-5 m/s angenommen.

1.2.8 Bemessungsgrundwasserstand

Im Bohrprofil wird ein Grundwasserstand von ca. 9,40 m unter Gelände angezeigt. Auch unter Starkniederschlagsbedingungen wird der sich einstellende Grundwasseranstieg keine Auswirkungen auf die Sickerfähigkeit, im Hinblick der DWA A 138 und dem Mindestflurabstand, der oberen Bodenschichten habe. Die hydrogeologische Karte des NIBIS zeigt einen Grundwasserstand von > 32,50 mNN bis 35,00 mNN. Das Gelände liegt bei 41,40 mNN bis 45,30 mNN. Auch hier ist ein ausreichender Grundwasserflurabstand zu erkennen.

2 Beschreibung der Einzugsflächen und Oberflächenabflüsse

In der vorherigen Bebauung befand sich auf der Liegenschaft ein vorhandener Gebäudetrakt. Die Dachflächen des vorhandenen Gebäudes und die befestigten Außenanlagen werden als ungedrosselte Ableitungsflächen berechnet. Die Einzugsflächen sind in Anlage 1, Blatt 3 dargestellt.

2.1 Aufstellung der vorhandenen Einzugsflächen

Best	Bestandsflächen										
Nr.	angeschlossene Teilfläche A _E	mittlerer Abflussbeiwert Ψ _{iM}	undurchläs- sige Fläche Au	Beschreibung der Fläche							
	[m²]	[-]	[m²]								
AB1	2.111,00	1,00	2.111,00	Dachfläche Haupthaus							
AB2	495,00	0,75	371,25	Pflasterflächen							
AB3	1.205,00 0,75		903,75	Pflasterflächen							
	Ableitung E	Bestand, A _{u, Alt} :	3.386,00								

2.2 Aufstellung der geplanten Einzugsflächen

2.2.1 Kanalisierte Einzugsflächen

Planun	gsflächen kanali	siert		
	angeschlossene	mittlerer	undurchläs-	
NI	Teilfläche A _E	Abflussbeiwert	sige Fläche	Daaahyaihuwa day Eläaha
Nr.		Ψ_{iM}	A_{u}	Beschreibung der Fläche
	[m²]	[-]	[m²]	
AE1	127,00	1,00	127,00	Dachfläche, Haus 7
	Ablei	tung in RW1.1:	127,00	
AE2	132,00	1,00	132,00	Dachfläche, Haus 7
	Ablei	tung in RW1.2:	259,00	
AE3	322,00	1,00	322,00	Dachfläche, Haus ¾
	Ablei	tung in RW1.3:	322,00	
	Ablei	tung in RW1.4:	581,00	
AE4	322,00	1,00	322,00	Dachfläche, Haus ¾
	Ablei	tung in RW1.5:	322,00	
AE5	300,00		300,00	Dachfläche, Haus West
	Ablei	tung in RW1.6:	300,00	
AE6	181,00	1,00	<u>181,00</u>	Dachfläche, Haus West
	Ablei	tung in RW1.7:	1.384,00	
AE7	188,00	1,00	<u>188,00</u>	Dachfläche, Haus West
	Ablei	tung in RW1.8:	1.572,00	
AE8	168,00	1,00	168,00	Dachfläche, Haus West
AE9	323,00	0,75	<u>242,25</u>	Pflaster, Haus West
		tung in RW1.9:	410,25	
		amt Abschnitt 1:	1.982,25	
AE10	324,00		<u>324,00</u>	Dachfläche, Haus 5/6
		tung in RW2.1:	324,00	
AE11	324,00		324,00	Dachfläche, Haus 5/6
	Ablei	tung in RW2.2:	324,00	
AE12	85,00	,	<u>85,00</u>	Rampe
		tung in RW2.3:	733,00	
AE13	324,00	*	<u>324,00</u>	Dachfläche, Haus ½
		tung in RW2.4:	324,00	
	Ablei	tung in RW2.5:	1.057,00	

Planun	gsflächen kanali	siert		
Nr.	angeschlossene Teilfläche A _E	mittlerer Abflussbeiwert Ψ _{iM}	undurchläs- sige Fläche Au	Beschreibung der Fläche
	[m²]	[-]	[m²]	
AE14	324,00	,	<u>324,00</u>	Dachfläche, Haus 1/2
		tung in RW2.6:	324,00	
AE15	331,00	1,00	<u>331,00</u>	Dachfläche, Haus West
	Ablei	tung in RW2.7:	331,00	
AE16	192,00	1,00	192,00	Dachfläche, Haus West
	Ablei	tung in RW2.8:	1.904,00	
AE17	170,00	1,00	170,00	Dachfläche, Haus West
AE18	49,00	0,75	36,75	Rampe Pflaster, Haus West
	Ableitung	in RW2.9/2.10:	2.110,75	•
AE19	196,00	1,00	196,00	Dachfläche, Haus West
AE20	260,00	0,75	195,00	Pflaster, Haus West
	· · · · · · · · · · · · · · · · · · ·	ing in RW2.11:	391,00	,
		amt Abschnitt 2:	2.501,75	
	Ableitung ges	samt, A _{u,Planung} :	4.484,00	

2.2.2 Einzugsflächen über Dränageableitung

Planun	gsflächen Dräna	ge		
Nr.	angeschlossene Teilfläche A _E	$\begin{array}{l} \text{mittlerer} \\ \text{Abflussbeiwert} \\ \Psi_{\text{iM}} \end{array}$	undurchläs- sige Fläche Au	Beschreibung der Fläche
	[m²]	[-]	[m²]	
AE21	176,00	0,30	52,80	Pflasterfläche Haus West
AE22	23,00	0,30	6,90	Geräteraum Haus West
AE23	20,00	0,30	6,00	Geräteraum Haus West
AE24	135,00	0,30	40,50	Pflasterfläche Haus 1/2 3/4
AE25	23,00	0,30	6,90	Geräteraum Haus 1/2 3/4
AE26	183,00	0,30	54,90	Pflasterfläche Haus 5/6 7
AE27	47,00	0,30	14,10	Geräteraum Haus 5/6 7
AE28	44,00	0,30	13,20	Geräteraum Haus 5/6 7
	Ableitung ges	samt, A _{u,Planung} :	195,30	

2.3 Berechnung der resultierenden Einzugsfläche

Die resultierende Einzugsfläche ergibt sich aus der geplanten Einzugsfläche AU, Planung, gesamt abzüglich der vorhandenen Einzugsfläche:

 $A_{u,Res} = A_{u,Planung} - A_{u}$ Bestand = 4.484,00+195,30m² - 3.386,00 m² = 1.293,30 m²

3 Berechnung der geplanten Entwässerungseinrichtungen

3.1 Berechnung des Drosselabflusses

Zur Ableitung von Niederschlag in die Kanalisation ist die Einhaltung einer Drosselabflussspende notwendig. Die Stadt Vechta hat für alle Neuerschließungen eine Drosselabflussspende von $q_{dr} = 1,50 \text{ l/(sxha)}$ festgelegt. Zur Ermittlung der Bemessungsdrosselspende werden die Flurstücke 112/7 und 112/8, mit $A_{ges} = 7.640,00 \text{ m}^2 + 412,00 \text{ m}^2 = 8.052,00 \text{ m}^2$ zugrunde gelegt.

Hieraus ergibt sich eine erlaubte Abflussmenge von:

 $Q_{ab} = A_{ges} \times q_{dr} = 8.052,00 \text{ m}^2 \times 1,5 \text{ l/(sxha)} / 10.000 \text{ m}^2/\text{ha} = 1,208 \text{ l/s}.$

Die Bemessungsdrosselabflussspende ergibt sich zu:

 $q_{Dr,u} = Q_{ab} / A_{u,Res} = 1,208 l/s /(1.293,30 m^2 / 10.000 m^2 / ha) = 9,34 l/(sxha).$

3.2 Berechnung des Rückhaltevolumens

Eingangsdaten				
angeschl. undurchl. Fläche Drosselabfluss	Au = q _{dr,r,u} =	0,129 9,34	ha I/(sxha)	soll <= 200 ha soll <= 40 l/(sxha)
Fließdauer Regenhäufigkeit Zuschlagsfaktor Abminderungsfaktor	t _f = n = f _Z = f _a =	5,00 0,2 1,20 0,9984	1/a T= -	soll <= 30 min 5 jährig

Bemessur	ng des Rückh	altevolum	ens		
					spez. Speicher-
D	h_n	$r_{D(n)}$	$q_{dr,r,u}$	Differenz	volumen V _{S,U}
min	[mm]	[l/(sxha)]	[l/(sxha)]	zw. R u. qr	[m³/ha]
5	9,3	310,0	9,34	300,7	108,062
10	13,8	230,0	9,34	220,7	158,618
15	16,8	186,7	9,34	177,4	191,239
20	19,1	159,2	9,34	149,9	215,449
30	22,5	125,0	9,34	115,7	249,422
45	26,0	96,3	9,34	87,0	281,296
60	28,4	78,9	9,34	69,6	300,016
90	30,6	56,7	9,34	47,4	306,401
120	32,3	44,9	9,34	35,6	306,749
180	34,8	32,2	9,34	22,9	295,798
240	36,7	25,5	9,34	16,2	278,810
360	39,6	18,3	9,34	9,0	231,894
540	42,8	13,2	9,34	3,9	149,876
720	45,3	10,5	9,34	1,2	60,094
1080	49,0	7,6	9,34	0,0	0,000
1440	51,8	6,0	9,34	0,0	0,000
2880	57,3	3,3	9,34	0,0	0,000
4320	60,8	2,3	9,34	0,0	0,000

 $V_{S,U max} = 306,749 [m^3/ha]$

<u>Erforderliches Rückhaltevolumen</u> V = V_{S,U max} x A_u = 306,749 x 0,129

 $V = 39,672 \text{ m}^3$ $Q_{ab} = 1,208 \text{ l/s}$

Nachweis des erforderlichen Stauvolumens

500

400

400

300

400

400

500

400

400

300

7.00

2,26

2,64

1,33

3,77

4,34

6,82

2,26

2,64

<u>0,64</u>

Staukanalnachweis								
Nr.	Länge	DN	Volumen					
RW 1.1	23,00	400	2,89					
RW 1.2	24,15	400	3,03					

35,65

18,00

21,00

18,75

30,00

34,50

34,75

18,00

21,00

9,00

RW 1.4

RW 1.7

RW 1.8

RW Stau

RW 2.1

RW 2.3

RW 2.5

RW 2.8

RW 2.9

RW 2.10

3.2.1

39,62 Mit dieser Anordnung wird das erforderliche Stauraumvolumen erreicht.

3.2.2 Hydraulische Berechnung der Drosselung

Die Drossel wird jeweils als Blende in den Drosselschächten R1.6 und R2.8 montiert. Als Notüberlauf werden die R1.4 und R2.5 mit einer Gitterrostabdeckung ausgestattet, sodass das überstauende Wasser hier auf die Seitenbereiche abströmen kann. Die Druckdifferenz an der Drosselblende wird mit Sohle Ablauf = 40,35 mNN und der Scheitelhöhe im Schacht R2.1 = 44,12 mNN + 0,40 m = 44,52 mNN

Diese beträgt $\Delta H = 44,52 \text{ mNN} - 40,35 \text{ mNN} = 4,17 \text{ m}$. Der Nachweis erfolgt für eine Drosslung, mit Qab /2 = 1,208/2 = 0,604 l/s. Der Nachweis der Drossel wird in fünf Stauhöhen durchgeführt und die Ergebnisse gemittelt.

Stauhöhe	oben	44,52	mNN	
	unten	40,35	mNN	
	h =	4,17	m	
Abflussbeiwert	$\alpha =$	0,58	-	
Anzahl der Abschnitte	n =	5	Stück	
	hn =	0,834	m	
Drosselöffnung	DN	14	mm	
Q (hn) =	h1	0,34	m	Qab = 0.36 l/s
•	h1 h2	0,34 1,67		Qab = 0.36 I/s Qab = 0.52 I/s
•		- , -	m	,
•	h2	1,67	m	Qab = 0.52 l/s
•	h2 h3	1,67 2,50	m m m	Qab = 0.52 l/s Qab = 0.63 l/s
•	h2 h3 h4	1,67 2,50 3,34	m m m	Qab = 0,52 l/s Qab = 0,63 l/s Qab = 0,73 l/s

Der theoretische Abfluss soll jeweils 0,604 l/s nicht überschreiten. Die Praxis hat gezeigt, dass eine starre Blende langfristig die bewährteste Drosselungsart ist. Diese sollte nicht unter DN 50 mm montiert werden, da sonst eine zu große "Verstopfungsgefahr" besteht. Die Drosseln werden daher mit DN 50 mm gewählt. Das notwendige Rückhaltevolumen wird jedoch auf Qab 1,208 l/s errichtet.

3.3 Hydraulische Berechnung der Regenwasserkanalisation

Die Kanäle sind alle als Staukanäle / Staublöcke ausgelegt. Der hier geführte Nachweis zeigt die Auslastung der Haltungen ohne Drosselung, mit Mindestquerschnitt. Bemessungsregenspende $r_{5(5)} = 310,0 \text{ l/(sxha)}$.

Kan	alnetzbe	rech	nung	- Rege	nwasse	r										
Nr	Einz fläche	Abfluss beiwert	Red. Einz fläche	Regen- abfluss	Haltungsnr.	Haltungs- länge	Kanal	sohle	Kanal- gefälle	Durch- messer	Rauhig- keit	Vollfüll	ung	Auslas- tung	Teilfü	llung
	A _E	φ	A red	Q	На	L	Zu	Ab	J	DN	k _b	Q_v	v _v		v_t	h
	[m²]	[-]	[ha]	[l/s]		[m]			[‰]	[mm]	[-]	[l/s]	[m/s]	[%]	[m/s]	[mm]
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	127,00	1,00	0,013	3,937	RW1.1	23,00	43,96	43,73	10,00	<u>400</u>	1,50	210,02	1,67	1,87	0,24	38
1	132,00	1,00	0,013	4,092	RW1.1a	17,00	43,59	43,54	3,00	150	1,50	8,41	0,48	48,64	0,47	74,1
2	259,00	1,00	0,013	3,937	RW1.2	24,15	43,73	43,49	10,00	<u>400</u>	1,50	210,02	1,67	1,87	0,24	38
3	322,00	1,00	0,032	9,982	RW1.3	27,75	43,57	43,49	3,00	200	1,50	18,15	0,58	54,99	0,59	106
4	581,00	1,00	0,058	18,011	RW1.4	35,65	43,49	43,13	10,00	<u>500</u>	1,50	378,97	1,93	4,75	1,04	74,5
5	322,00	1,00	0,032	9,982	RW1.5	27,75	43,33	43,25	3,00	200	1,50	18,15	0,58	54,99	0,59	106
6	300,00	1,00	0,030	9,300	RW1.6	24,25	43,20	43,13	3,00	200	1,50	18,15	0,58	51,23	0,58	101
7	1.384,00	1,00	0,138	42,904	RW1.7	18,00	43,13	42,77	20,00	<u>400</u>	1,50	297,37	2,37	14,43	1,69	100
8	1.572,00	1,00	0,157	48,732	RW1.8	21,00	40,77	40,35	20,00	400	1,50	297,37	2,37	16,39	1,76	107
9	410,25	1,00	0,041	12,718	RW1.9	26,00	40,43	40,35	3,00	200	1,50	18,15	0,58	70,06	0,62	124
10	324,00	1,00	0,032	10,044	RW2.1	30,00	44,12	43,82	10,00	400	1,50	210,02	1,67	4,78	0,90	59,6
11	324,00	1,00	0,032	10,044	RW2.2	30,00	43,63	43,54	3,00	200	1,50	18,15	0,58	55,33	0,59	106
12	733,00	1,00	0,073	22,723	RW2.3	34,50	43,82	43,48	10,00	400	1,50	210,02	1,67	10,82	1,12	88,4
13	324,00	1,00	0,032	10,044	RW2.4	32,00	43,57	43,48	3,00	200	1,50	18,15	0,58	55,33	0,59	106
14	1.057,00	1,00	0,106	32,767	RW2.5	34,75	43,48	43,13	10,00	<i>500</i>	1,50	378,97	1,93	8,65	1,22	100
15	324,00	1,00	0,032	10,044	RW2.6	31,00	43,22	43,13	3,00	200	1,50	18,15	0,58	55,33	0,59	106
16	331,00	1,00	0,033	10,261	RW2.7	26,50	43,21	43,13	3,00	200	1,50	18,15	0,58	56,52	0,60	108
17	1.904,00	1,00	0,190	59,024	RW2.8	18,00	43,13	42,95	10,00	400	1,50	210,02	1,67	28,10	1,44	144
18	2.110,75	1,00	0,211	65,433	RW2.9	21,00	40,95	40,53	20,00	400	1,50	297,37	2,37	22,00	191,68	126
19	2.110,75	1,00	0,211	65,433	RW2.10	9,00	40,53	40,35	20,00	300	1,50	138,74	1,96	47,16	1,93	145
20	391,00	1,00	0,039	12,121	RW2.11	21,00	40,41	40,35	3,00	200	1,50	18,15	0,58	66,77	0,62	120
DN 3	300 bis DN	<i>500</i> w	erden	als Staura	aumkanal	ausgele	gt									

3.4 Überflutungsnachweis

Einzugsflä	achen - Überflutu	ngsnachweis		
	angeschlossene		undurchläs-	
Nr.	Teilfläche A _E	Abflussbeiwert	sige Fläche	Beschreibung der Fläche
INI.		Ψ_{iM}	A_{u}	beschiebung der Flache
	[m²]	[-]	[m²]	
AE1	127,00	1,00	127,00	
AE2	132,00	1,00	132,00	
AE3	322,00	1,00	322,00	Dachfläche, Haus 3/4
AE4	322,00	1,00	322,00	Dachfläche, Haus 3/4
AE5	300,00	1,00	300,00	Dachfläche, Haus West
AE6	181,00	1,00	181,00	Dachfläche, Haus West
AE7	188,00	1,00	188,00	Dachfläche, Haus West
AE8	168,00	1,00	168,00	Dachfläche, Haus West
AE10	324,00	1,00	324,00	Dachfläche, Haus 5/6
AE11	324,00	1,00	324,00	Dachfläche, Haus 5/6
AE13	324,00	1,00	324,00	Dachfläche, Haus 1/2
AE14	324,00	1,00	324,00	Dachfläche, Haus 1/2
AE15	331,00	1,00	331,00	Dachfläche, Haus West
AE16	192,00	1,00	192,00	Dachfläche, Haus West
AE17	170,00	1,00	170,00	Dachfläche, Haus West
AE19	<u> 196,00</u>	1,00	<u>196,00</u>	Dachfläche, Haus West
ADach	3.925,00		3.925,00	
AE9	323,00	0,75	242,25	Pflaster, Haus West
AE12	85,00	1,00	85,00	Rampe
AE18	49,00	0,75	36,75	
AE20	260,00	0,75	195,00	
AE21	176,00	0,30	52,80	Pflasterfläche Haus West
AE22	23,00	0,30	6,90	
AE23	20,00	0,30	6,00	
AE24	135,00	0,30	40,50	Pflasterfläche Haus 1/2 3/4
AE25	23,00	0,30	6,90	
AE26	183,00	0,30	54,90	
AE27	47,00	0,30	14,10	
AE28	44,00	0,30		Geräteraum Haus 5/6 7
AFaG	1.368,00		754,30	
A _{Gesamt}	5.293,00		4.679,30	

Maßgebliche Regendauer D = 5 min

Bemessungsregen $r_{(5,5)} = 310,0 \text{ l/(sxha)}$ Bemessungsregen $r_{(5,30)} = 473,3 \text{ l/(sxha)}$

$$V_{\text{R\"{u}ck}} = (r_{(\text{D},30\,)} \cdot A_{\text{ges}} - (r_{(\text{D},5)} \cdot A_{\text{Dach}} \cdot C_{\text{Dach}} + r_{(\text{D},5)} \cdot A_{\text{FaG}} \cdot C_{\text{FaG}})) \cdot \frac{D \cdot 60}{10.000 \cdot 1.000}$$

$$V_{\text{Rűck}} = \underbrace{(473, 3 \cdot 5.293, 00 - (310, 0 \cdot 3.925, 00 \cdot 1, 00 + 310, 0 \cdot 1.368, 00 \cdot 0, 75)) \cdot 5 \cdot 60}_{(10.000 \cdot 1.000)}$$

 $V_{R\ddot{u}ck}$ = 29,75 m³

Diese Überflutungsmenge wird sich an den Tiefpunkten des Planungsgebietes einstauen. Diese sind auf der Westseite des Grundstücks zu erwarten.

Hier bietet sich eine Fläche von: $A_{Stau} = 850,00 \text{ m}^2 \text{ an.}$

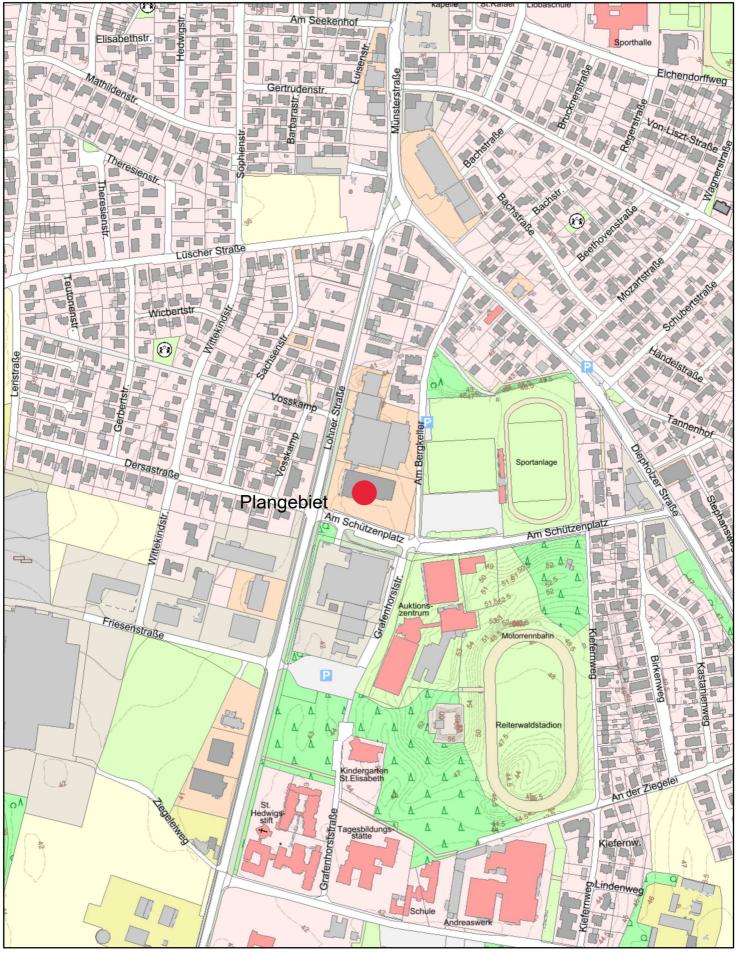
Die Einstauhöhe ergibt sich zu: $h_{Stau} = V_{R\"uck} / A_{Stau} = 29,74 \text{ m}^3 / 850,00 \text{ m}^2 = 0,035 \text{ m} = 3,50 \text{ cm}.$

Diese Überflutung kann schadlos aufgenommen werden.

4 Zusammenfassung

Die Wunderpark GmbH & Co. KG aus Lastrup plant den Neubau von mehreren Mehrfamilienhäusern, mit Nebengebäuden und einer Tiefgarage, am Schützenplatz / Lohner Straße, in Vechta zu errichten. An diesem Standort stand bereits ein Gebäudetrakt, welches zurückgebaut werden soll. Zur Erschließung der geplanten Häuser sind neue Regen- und Schmutzwasserkanalisationen notwendig. In der Lohner Straße stehen für den Regenwasseranschluss Anschlusspunkte zur Verfügung. Das Schmutzwasser ist über die Straße Am Schützenplatz zu entwässern. Die Regenwasser- und Schmutzwasserkanalisationen können im Freigefälle errichtet werden. Lediglich die Rampe zur Tiefgarage muss über eine Hebeanlage entwässert werden. Der Niederschlagsabfluss wird gedrosselt abgeleitet. Hierzu werden zwei Drosselschächte, mit jeweils einer Drosselblende DN 50 errichtet. Die Regenwasserrückhaltung wird entsprechend des erforderlichen Stauvolumens ausgelegt. Hierzu werden Staukanäle mit einem Durchmesser DN 400 und DN 500 geplant. Die Pflasterungen zwischen den Häusern werden über die Seitenbereiche entwässert. Die Grünanlagen oberhalb der Tiefgarage sind daher zu dränieren.

Die Entwässerungssysteme sind nach den derzeit gültigen Normen und Vorschriften, sowie den Arbeitsblättern des DWA, geplant worden. Die hierzu notwendigen Berechnungen und Erläuterungen sind in dieser Unterlage mit aufgeführt.


Lastrup, 29.09.2022

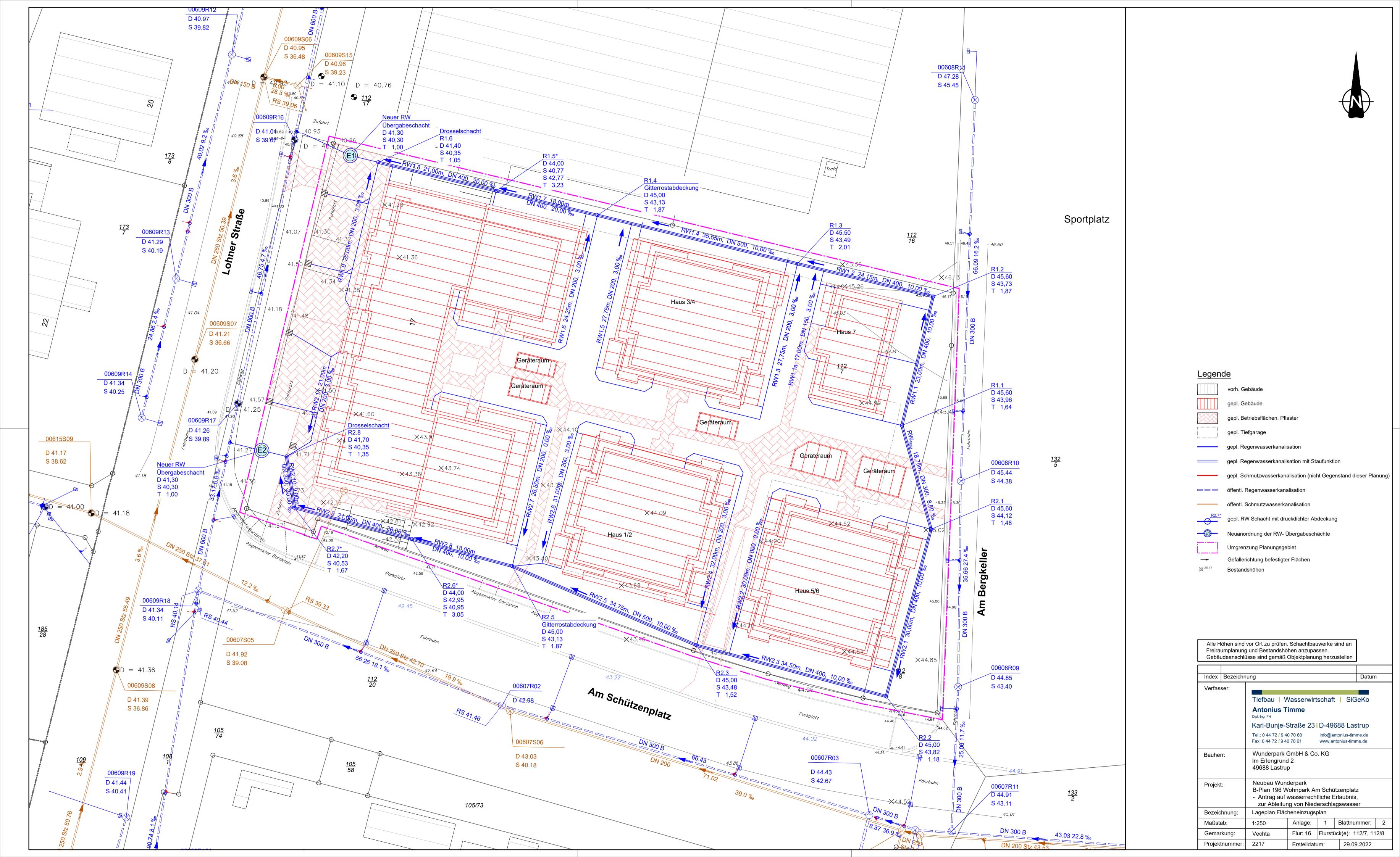
Antonius Timme

Ing.-Büro Antonius Timme

Karl-Bunje-Straße 23

D- 49688 Lastrup

Maßstab: 1:5.000


Anlage 1 Blatt 1

0 0,05 0,1 0,2 Km

Quelle: Auszug aus den Geobasisdaten des Landesamtes für Geoinformation und Landesvermessung Niedersachsen.
© 2022

